
The 2018 SANS Holiday
Hack Challenge

by rack3t a.k.a. Alex Trylysenko 

Introduction

Hello and welcome to the 2018 SANS Holiday Hack Challenge write-up! First of all, I would
like to thank everyone on the SANS team and beyond for creating such an awesome
challenge! It was so much fun to compete, work through challenges, and learn many
valuable lessons along the way.

This write-up provides a light-hearted walkthrough of completing each challenge and does
not take itself too seriously. I hope you find it interesting.

Welcome to KringleCon!

Page � of �2 36

Answers

Objective 1: Orientation Challenge
Question: What phrase is revealed when you answer all of the questions at the KringleCon
Holiday Hack History kiosk inside the castle? For hints on achieving this objective, please visit
Bushy Evergreen and help him with the Essential Editor Skills Cranberry Pi terminal challenge.

Answer:

1. Let’s go solve Bushy Evergreen’s Essential Editor Skills Cranberry Pi
terminal challenge. He’s asking me to exit vi.

2. To solve this terminal challenge, I press ESC to go into vi command mode,
then press “:q” to quit. “:q!” can also be used to exit without saving
changes or “:x” to exit with changes saved. OK, not too bad, but I can see
how it is not very intuitive.

3. Bushy recommends seeing Ed Skoudis’ “KringleCon 2018: Start
Here” (https://www.youtube.com/watch?v=31JsKzsbFUo) to find answers to kiosk
questions. Past challenges collection (https://holidayhackchallenge.com/
past-challenges/) can also be used to find answers.

4. I already knew answers to 3-4 questions from competing in past challenges
and found the rest through recommended sources. The answers are:

1).Firmware
This answer can be found either in past challenges (below) or in Ed’s
KringleCon talk at 4:30, which will be going on at track 2. I also remember
mounting this raw firmware image with “dd” back in 2015.

Page � of �3 36

https://www.youtube.com/watch?v=31JsKzsbFUo
https://holidayhackchallenge.com/past-challenges/
https://holidayhackchallenge.com/past-challenges/

2).ATNAS
Ed talks about ATNAS Corporation that manufactured the spying gnomes at 4:52
as well.

3).Business card
The infamous business card Santa had left behind and to this day I still

carry it with me in my wallet. Ed
Skoudis reminded me of it at 6:17 of
his video. This brings memories.

4).Cranberry Pi
The Linux terminals at North Pole are called Cranberry Pi’s - Jessica was
the first one to point one out and her and Josh were on the heels of Santa.

5).Snowballs
At 9:19 of the talk, a graphic description of giant snowballs attacking was
remembered by us all.

6).The Great Book
Ahh The Great Book (9:40), this was a great tale of history of the elves who
were actually a faction of the munchkins of Oz. This book was shredded by an
inter-dimensional tornado (something you don’t see every day) and then we
had to fetch different pages of the book.

5. Once all questions are answered correctly, the phrase is revealed: Happy
Trails.

Page � of �4 36

Objective 2: Directory Browsing
Question: Who submitted (First Last) the rejected talk titled Data Loss for Rainbow Teams:
A Path in the Darkness? Please analyze the CFP site to find out. For hints on achieving this
objective, please visit Minty Candycane and help her with the The Name Game Cranberry Pi
terminal challenge.

Answer:

1. Let’s go solve The Name Game to get a hint from Minty Candycane. He’s
asking for new worker Chan’s first name:

2. PowerShell call operator is provided as a hint for this challenge
https://ss64.com/ps/call.html. I have quickly tested options for command
injection and found one in option 2 - looks like they didn’t bother with
input sanitization.

3. Choose option 2, then
“1.1.1.1;ls;pwd”, which will list
files and show current directory.
This is a very simple command
injection. Instead of the semi-
colon “;”, the call operator “&”

could also be used to chain commands.

4. Now just “cat menu.ps1” and find an easy way in - “secret option 9”
provides a shell along with onboard.db
database structure:

Page � of �5 36

https://cfp.kringlecastle.com/
https://ss64.com/ps/call.html

5. With menu option 9, I drop into PowerShell and make the correct query for
Chan, who can now finally get his name tag. Backtick “`” in PowerShell
escapes the next character, which handy in this case.

6. Minty gives a hint that directory listing
is enabled on the CFP site.

7. Suspicious-looking /cfp/ directory is found
in main page’s source code.

8. Neither of the directory listed pages
are restricted so rejected talks can be
easily accessed from https://
cfp.kringlecastle.com/cfp/rejected-
talks.csv.

7. Now just search rejected-talks.csv for
“Data Loss for Rainbow Teams: A Path in
the Darkness?” and find that it was John McClane who had his talk denied.  

Page � of �6 36

https://cfp.kringlecastle.com/cfp/rejected-talks.csv
https://cfp.kringlecastle.com/cfp/rejected-talks.csv
https://cfp.kringlecastle.com/cfp/rejected-talks.csv

Objective 3: de Bruijn Sequences
Question: When you break into the speaker unpreparedness room, what does Morcel
Nougat say? For hints on achieving this objective, please visit Tangle Coalbox and help him
with Lethal ForensicELFication Cranberry Pi terminal challenge.

Answer:

1. Morcel Nougat wrote a love poem but deleted name of the person it was
meant for, so Tangle Coalbox is
asking me to find who this poem was
written for.

2. The answer is found by looking
through user’s .viminfo file in home
directory that’s updated as vi
editor is used. Looks like the
author performed a string

substitution here changing Elinore for NEVERMORE, so “Elinore” is the
answer. Morcel doesn’t seem too happy about making this change. This
challenge also confirms vi as the KringleCastle corporate text editor - Nano
and Emacs knowledge will not be useful this year.

3. In exchange for the solved
challenge, Tangle says: look, to
break the door code you are only
looking at 4^4 guesses, which is 256
guesses at most, anybody with a pen
and pencil could do it.

Page � of �7 36

4. To solve this challenge I “inspect element” on the door code to find
useful information - the domain, JavaScript logic, and the proper PHP
checker page.

5. I wrote a Python script to brute force the small amount of guesses
needed. Requests is the perfect module to do this job and it seems to be
everyone’s favorite among attendees and speakers I talked to here at
KringleCon.

6. This prints “The Number is 0120”, and represents the following sequence.

7. Once the door to Speaker Unpreparedness Room is opened, I
find Morcel Nougat in here, jamming to some old school hip-
hop as he shouts “Welcome unprepared speaker!”.

Page � of �8 36

Objective 4: Data Repo Analysis

Question: Retrieve the encrypted ZIP file from the North Pole Git repository. What is the
password to open this file? For hints on achieving this objective, please visit Wunorse
Openslae and help him with Stall Mucking Report Cranberry Pi terminal challenge.

Answer:

1. Going to check on Wunose Openslae to see what he’s dealing with. He is
asking me in a somewhat spammy
approach (“Madam or Sir”) to upload
the report because he lost the
shared service account credentials.

2. For this challenge, I utilize the
“visible-passwords-on-the-command-
line” vulnerability (https://
blog.rackspace.com/passwords-on-
the-command-line-visible-to-ps).
And by running “ps aux | less -+S”
to see full commands of running
processes, I obtain the following
command that launched the Samba
server.

3. Since now I know the password (“directreindeerflatterystable”) and the
shared service account (“report-upload”), the rest is easy. Upload
report.txt using smbclient tool and win the challenge. User can be specified
with “-U” switch. Of course, here I expose the password no better than the
Samba admin, but this is done for demonstration purposes - password can be
omitted and then entered at the prompt. “//localhost/report-upload/“ is the
server and share, while the Samba command is passed using “-c” switch and
the “put” method uploads the needed file.

Page � of �9 36

https://git.kringlecastle.com/Upatree/santas_castle_automation
https://blog.rackspace.com/passwords-on-the-command-line-visible-to-ps
https://blog.rackspace.com/passwords-on-the-command-line-visible-to-ps
https://blog.rackspace.com/passwords-on-the-command-line-visible-to-ps

4. As a reward, Wunorse tells me about Trufflehog - a tool used to dig
through repositories looking for passwords, keys, etc. Cool, I will use
that.

5. The ZIP file itself can be found by searching for “.zip” in the
repository https://git.kringlecastle.com/Upatree/
santas_castle_automation/find_file/master. From there I grab
ventilation_diagram.zip.

6. Now install Trufflehog with “pip install truffleHog” as stated on the
official repo https://github.com/dxa4481/truffleHog.

7. Run Trufflehog to find a bunch of goodies in the KringleCastle repo
including couple of private keys, some chats and the password I was looking
for -“Yippee-ki-yay”

Page � of �10 36

https://git.kringlecastle.com/Upatree/santas_castle_automation/find_file/master
https://git.kringlecastle.com/Upatree/santas_castle_automation/find_file/master
https://git.kringlecastle.com/Upatree/santas_castle_automation/find_file/master
https://github.com/dxa4481/truffleHog

8. The password is then used to decrypt ventilation_diagram.zip which
provides 2 JPG diagrams of both ventilation floors - I can use these to
break in “Die Hard” style.  

Page � of �11 36

Objective 5: AD Privilege Discovery
Question: Using the data set contained in this SANS Slingshot Linux image, find a reliable
path from a Kerberoastable user to the Domain Admins group. What’s the user’s logon
name? Remember to avoid RDP as a control path as it depends on separate local privilege
escalation flaws. For hints on achieving this objective, please visit Holly Evergreen and help
her with the CURLing Master Cranberry Pi terminal challenge.

Answer:

1. The plan for this objective is to go help Holly Evergreen with the
CURLing Master challenge. She says
the challenge involves making
requests over HTTP/2 protocol. Read
up on HTTP/2 https://
developers.google.com/web/
fundamentals/performance/http2/
and brush up on http2 requests using
CURL https://curl.haxx.se/docs/
http2.html. Also, at this moment I
made a sad discovery that neither
Python requests or Burp Suite
support HTTP/2 protocol.

2. I glanced at /etc/nginx/
nginx.conf just to confirm a few
things. The server is running on
port 8080 and yes, in fact, using
HTTP/2. Also, /etc/nginx/sites-
enabled/default config file shows
that SSL is not turned on for http2,
that can’t be good.

3. Use some CURL command line magic. curl offers the “—-http2-prior-
knowledge” option to
enable the use of HTTP/2
without HTTP/1.1 Upgrade.
The “—-http2” option by
itself only enables HTTP2
and includes an upgrade
header which just doesn’t
force HTTP/2 protocol.

4. The response is easily digestible and the follow up then earns victory in
this challenge. “-X” specified the HTTP method (POST) and “-d” is the data
portion of the request with key=value.

Page � of �12 36

https://download.holidayhackchallenge.com/HHC2018-DomainHack_2018-12-19.ova
https://developers.google.com/web/fundamentals/performance/http2/
https://developers.google.com/web/fundamentals/performance/http2/
https://developers.google.com/web/fundamentals/performance/http2/
https://curl.haxx.se/docs/http2.html
https://curl.haxx.se/docs/http2.html
https://curl.haxx.se/docs/http2.html

5. Following this major curling
victory, Holly recommends using
BloodHound to find a reliable path from

a Kerberoastable user to the Domain Admins group. BloodHound is a tool used
for exploring Active Directory trust relationships. Watch the intro video by
Raphael Mudge here: https://www.youtube.com/watch?v=gOpsLiJFI1o.

6. OK, after learning what
BloodHound can do, I load up the
Slingshot VM into Virtual Box,
setting it to be 64bit - this
was a sneaky change required for
the VM to work. Then, run
Bloodhound, which is already

installed on
the Slingshot.

7. The easiest
way to find a
reliable path

from a Kerberoastable user to
the Domain Admins group is by
performing a quick access query
already set up in BloodHound.
First, however don’t forget to
uncheck “CanRDP” in the
filtering section since this

would need separate local privilege
escalation flaws.

8. The user’s logon name is
LDUBEJ00320@AD.KRINGLECASTLE.COM and
that’s the correct answer. This user
represents a starting point of the
shortest path to reaching the most
cherished Domain Admins group.  

Page � of �13 36

https://www.youtube.com/watch?v=gOpsLiJFI1o
mailto:LDUBEJ00320@AD.KRINGLECASTLE

Objective 6: Badge Manipulation
Question: Bypass the authentication mechanism associated with the room near Pepper
Minstix. A sample employee badge is available. What is the access control number
revealed by the door authentication panel? For hints on achieving this objective, please visit
Pepper Minstix and help her with the Yule Log AnalysisCranberry Pi terminal challenge.

Answer:

1. I went to help Pepper Minstix with the Yule Log Analisis. The situation
is: they were victims of password
spraying attack and one of the
elves’ Web Access accounts was
successfully compromised.

2. I check out logs and looks like
they are Windows Event Logs. There
are lots of event IDs 4625 (“An
account failed to log on”) and 4624
(“An account was successfully logged
on”). I will focus on these since I
need to find the compromised account
- there should be a failed login,
followed by a successful login for
the same account, from the same
source.

3. Without getting too fancy, I
solved this challenge with a dirty
hack. Sometimes this is what hacking
is all about.

I use the provided Python to dump ho-ho-ho.evtx as XML and pipe all data
into the first grep - it looks for event ID 4625 (Failed Logon) and grabs
one line before (only for completeness of event) and 200 lines after the
event. I need to do this so I can find a successful login event after a
failed one. That’s what I do in the next grep - look for event ID 4624 and
grab one line before and 42 after (the full successful login event). I then
grep for the attacker’s IP. I know this is the attacker IP because there
were many failed logons coming from there. I can confirm this with a helper
command:

The final output provides 2 events, one was 4624 (the one I was looking
for), while the other was 4625 and obviously not the one I need. The answer
is minty.candycane. One recommendation I would give them is to send these

Page � of �14 36

https://www.holidayhackchallenge.com/2018/challenges/alabaster_badge.jpg

logs to a centralized location that
can easily parse known log types
(SIEM) and set an alert for
numerous failed logins from the same
source.

4. As a reward for this challenge,
Pepper tells me that Kringle Castle
employees have these cool cards with
QR codes that allow them access into
restricted areas. He hints at a SQL
database error being displayed which
could mean SQL injection
vulnerability.

5. I am now going to take the Google
ventilation system to bypass the Scan-O-
Matic. First though, I want to make sure I
have a badge displayed in case I get
stopped by security wherever I drop off
from the vent. I used Alabaster’s sample
badge to create my own, posing as a new
employee. Displaying my badge should keep
me off Physical Security’s radar.

Page � of �15 36

6. Now down the Google ventilation system. Follow first floor’s path, then
onto the second floor and drop into the restricted area.

7. Once I wiped the ventilation dust off myself, I could see Santa and Co.
They don’t seem to suspect anything so I think the hand-made badge is
working. But now would be a good time to go back and figure out the Kringle
Castle’s badge system - you never know when you might need actual access.

8. I’m using a barcode creation tool at https://www.the-qrcode-
generator.com/ and my SQL injection knowledge, some of it can be found here
https://www.owasp.org/index.php/
SQL_Injection_Bypassing_WAF#Auth_Bypass. The way I went about doing this
is first generate an error, hoping something descriptive comes back, then
fit into the proper syntax to inject what I need. I generated an error with
this query: ' or 1=1 and got the descriptive message (web response) I was
looking for:

{"data":"EXCEPTION AT (LINE 96 \"user_info = query(\"SELECT
first_name,last_name,enabled FROM employees WHERE authorized = 1 AND uid =
'{}' LIMIT 1\".format(uid))\"): (1064, u\"You have an error in your SQL
syntax; check the manual that corresponds to your MariaDB server version for
the right syntax to use near '' LIMIT 1' at line 1\”)","request":false}

9. Now I just fit into syntax correctly with this query which finds me
someone authorized and enabled:

a’ UNION SELECT first_name,last_name,enabled FROM employees WHERE authorized
= 1 AND enabled = 1 -- #

Page � of �16 36

https://www.the-qrcode-generator.com/
https://www.the-qrcode-generator.com/
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass

The final database query would look like this:

SELECT first_name, last_name, enabled FROM employees WHERE authorized = 1
AND uid = ‘a' UNION SELECT first_name, last_name, enabled FROM employees
WHERE authorized = 1 AND enabled = 1 -- # LIMIT 1

10. Once the badge system is cracked, I see Access Granted - Control number
19880715.  

Page � of �17 36

Objective 7: HR Incident Response
Question: Santa uses an Elf Resources website to look for talented information security
professionals. Gain access to the website and fetch the document C:
\candidate_evaluation.docx. Which terrorist organization is secretly supported by the job
applicant whose name begins with "K." For hints on achieving this objective, please visit
Sparkle Redberry and help her with the Dev Ops Fail Cranberry Pi terminal challenge.

Answer:

1. Sounds like Sparkle Redberry uploaded some sensitive info into his git
repo and thinks it’s not a big deal
because he overwrote the files. I
don’t think that’s how git works, it
does a great job at remembering
changes.

2. Run “git log —-stat” to get
information about commits and find
an interesting change:

3. Now just “git diff” between the commit above and the previous commit
(when creds were still in the file) and get the answer:
sredberry:twinkletwinkletwinkle

Page � of �18 36

https://careers.kringlecastle.com/

4. Sparkle is feeling embarrassed but
thanks for the help by telling me
that CSV can be taken as input in the
Kringle Castle Careers website and
coincidentally there’s a talk about
CSV injection by Brian Hostetler at
the KringleCon (https://
www.youtube.com/watch?
v=Z3qpcKVv2Bg). I attended the talk
to learn about it.

5. Ok, now craft the payload and it actually turns out to be fairly straight
forward, because after all, CSV is just a text bases comma-separated file.
Here’s my payload - it just copies the file over
to the correct location. I was able to find the
full path by visiting a page that doesn’t exist
and getting a too descriptive “404 Not Found”
back. First A1 spreadsheet cell must have this
command… umm I mean equation.

6. Now visit https://careers.kringlecastle.com/public/Rack3t.docx and
grab the Word doc. The answer “Fancy Beaver” cyber terrorist organization is
found in the document file for Krampus.

Page � of �19 36

https://www.youtube.com/watch?v=Z3qpcKVv2Bg
https://www.youtube.com/watch?v=Z3qpcKVv2Bg
https://www.youtube.com/watch?v=Z3qpcKVv2Bg
https://www.youtube.com/watch?v=Z3qpcKVv2Bg
https://careers.kringlecastle.com/public/Rack3t.docx

Objective 8: Network Traffic Forensics
Question: Santa has introduced a web-based packet capture and analysis tool at https://
packalyzer.kringlecastle.comto support the elves and their information security work.
Using the system, access and decrypt HTTP/2 network activity. What is the name of the
song described in the document sent from Holly Evergreen to Alabaster Snowball? For hints
on achieving this objective, please visit SugarPlum Mary and help her with the Python Escape
from LA Cranberry Pi terminal challenge.

Answer:

1. First, SugarPlum’s Python Escape challenge has to be solved. Watch Mark
Baggett’s talk about escaping Python
shells https://www.youtube.com/
watch?v=ZVx2Sxl3B9c.

2. I import “os” module using the
following control-bypassing
technique. Then do another eval to
drop into the shell and run the
winning command. The limitations
applied to Python shell seem trivial
to bypass and surely cannot be
relied on for anything production
serious.

3. SugarPlum shares a secret that Santa’s
Packalyzer was rushed into production and
deployed with development code in the web
root. Also, she mentions SSL environmental
variables, descriptive errors and once again
HTTP/2 is involved.

Page � of �20 36

https://packalyzer.kringlecastle.com/
https://packalyzer.kringlecastle.com/
https://www.youtube.com/watch?v=ZVx2Sxl3B9c
https://www.youtube.com/watch?v=ZVx2Sxl3B9c
https://www.youtube.com/watch?v=ZVx2Sxl3B9c

4. Onto the Packalyzer, I register at https://
packalyzer.kringlecastle.com/ and log in to look around. Packets can be
captured and analyzed but are obviously encrypted because
of HTTP/2. I will need a way to decrypt them. Another thing
that stands out is this “isAdmin” boolean value in user
account - this might as well be a bull’s eye.

5. Next, analyze the source code. This must be the dev code since it is
being served from another port:
https://packalyzer.kringlecastle.com:80/pub/js/custom.js

Looking through more source code, I found an important app.js Node.js file:
https://packalyzer.kringlecastle.com:80/pub/app.js

Upon further analysis of the source code, I find that environmental
variables can be viewed and the dev_mode indeed still on:

I find this URL https://packalyzer.kringlecastle.com/sslkeylogfile/
giving a descriptive error.

I did the same thing for “dev” variable and was able to combine it together
(as logically it is in the app.js source code) with the output of this error
to find keys at https://packalyzer.kringlecastle.com/dev/
packalyzer_clientrandom_ssl.log

6. Sniff traffic, download PCAPs and SSL keys. Decrypt the PCAP using
Wireshark -> Preferences -> SSL -> Pre-master-secret log filename. I used
this filter: “http2.data.data” to search for session cookies hoping that one
of them end up being an admin session.

7. Sure enough, one of the “PASESSION” cookies ends up being an admin
session. To steal this cookie, all I had to do was change my “PASESSION”
value to the newly found one and refresh the browser.

The Result is alabaster’s admin session with
a suspicious looking PCAP file in his
capture files:

Page � of �21 36

https://packalyzer.kringlecastle.com/
https://packalyzer.kringlecastle.com/
https://packalyzer.kringlecastle.com:80/pub/js/custom.js
https://packalyzer.kringlecastle.com:80/pub/app.js
https://packalyzer.kringlecastle.com/sslkeylogfile/
https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log
https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log
https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log

8. The packet capture is SMTP mail traffic. I follow TCP stream to find an
email from Holly Evergreen to Alabaster Snowball with an attached base64
encoded file. I like to use Notepad++ to decode/encode base64. Once decoded,
the file can be saved as its magic number indicates, a PDF.

9. The document describes musical tones and their differences. It also takes
“Mary Had a Little Lamb” from Bb to A, which happens to be the answer I was
looking for.  

Page � of �22 36

Objective 9: Ransomware Recovery
Question: Alabaster Snowball is in dire need of your help. Santa's file server has been hit
with malware. Help Alabaster Snowball deal with the malware on Santa's server by
completing several tasks. For hints on achieving this objective, please visit Shinny Upatree and
help him with the Sleigh Bell Lottery Cranberry Pi terminal challenge.

Objective 9.1: Catch the Malware
Question: Assist Alabaster by building a Snort filter to identify the malware plaguing
Santa's Castle.

Answer:

1. Shinny Upatree has a GDB challenge in exchange for a hint. The challenge
is to win in lottery, using the 2
tools best friends: gdb and objdump.

2. Run objdump to disassemble all
program sections: “objdump -D
sleighbell-lotto” and look for
interesting functions. Function
“winnerwinner” looks very
interesting and I will target it
first.

3. For this Cranberry Pi terminal challenge, Rob Bowes’ article “Using gdb
to call random functions” at https://pen-testing.sans.org/blog/
2018/12/11/using-gdb-to-call-random-functions was very helpful.

4. Run “gdb -q ./sleighbell-lotto”
and set a breakpoint on main.
Then, run the program. Once
breakpoint on main is reached, I
jump to winnerwinner function and
the challenge is complete.

5. As a reward Alabaster explains that there’s a new ransomware called
Wannacookie and its infecting all elves in the Castle. It was distributed
through a very common delivery method - a cookie recipe document.
Supposedly, the malware transfers files through DNS and there’s hope that
encryption keys could be retrieved from memory like another Wanna-type

Page � of �23 36

https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions
https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions
https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions

ransomware InfoSec industry
witnessed not too long ago.
Alabaster also mentions Chris Davis’
“Analyzing PowerShell Malware”
KringleCon talk as a good place to
learn about this kind of malware
(https://www.youtube.com/watch?
v=wd12XRq2DNk6).

6. Snort rule is needed to solve this challenge. I can get some PCAPs here
http://snortsensor1.kringlecastle.com to see what kind of traffic we are
dealing with. Looks like a lot of traffic is DNS, TXT query type, with a
consistent value in the subdomain name:
“77616E6E61636F6F6B69652E6D696E2E707331”.

Page � of �24 36

https://www.youtube.com/watch?v=wd12XRq2DNk6
https://www.youtube.com/watch?v=wd12XRq2DNk6
https://www.youtube.com/watch?v=wd12XRq2DNk6
http://snortsensor1.kringlecastle.com

7. The following Snort rule is what I came up with and won the challenge:

alert udp any any -> any any (msg:"WannaCookie Ransomware";
content:"77616E6E61636F6F6B69652E6D696E2E707331"; sid:1000001; rev:1;)

This states: any UDP traffic that contains the unique string IOC will
trigger the rule. This rule should work well for this malware but perhaps
there’s a better way to detect this type of DNS anomalies in general - for
instance, many unique subdomains queried per TLD+1 (volume-based), long
names, computer-generated names, etc.

Objective 9.2: Identify the Domain

Question: Using the Word docm file, identify the domain name that the malware
communicates with.

Answer:

1. Alabaster provides the malicious Word document and a hint that macros can
be extracted using olevba tool. Olevba is a Python tool and is easily
installed with “pip install -U oletools”. Run olevba and save the analysis:

2. Portion of the analysis shows PowerShell:

3. Now I would like to know what this piece of code is doing, decoding and
decompressing it is one way of doing it but this time I will try a different
approach. I want it to write this stage to a file. I made a few adjustments
so the decoded PowerShell doesn’t execute and instead write its decoded self
to a file. I will call this piece “Stage 1 encoded” since it was only
stripped from the Word doc and didn’t even execute yet.

Page � of �25 36

4. Once I run the above command, I have “Stage 1 decoded”. I cleaned up the
code to make it more readable.

The familiar string from previous challenge is represented by variable “f”
and the domain being used is erohetfanu.com.

Objective 9.3: Stop the Malware
Question: Identify a way to stop the malware in its tracks!

Answer:

1. Alabaster hints that there could be some mechanism to stop the malware,
similar to the kill switch in WannaCry (https://www.wired.com/2017/05/
accidental-kill-switch-slowed-fridays-massive-ransomware-attack/).

2. For this, I will need the next stage - Stage 2. I modify the Decoded
Stage 1 to make it write Stage 2 to a file. The Invoke-Expression (iex) has
been removed and I added pipe to output result to file.

3. Now I have Stage 2 but it is very hard to read:

Page � of �26 36

https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/
https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/
https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/

4. Again, I cleaned up the code and found the following few lines very
interesting:

This has to be the kill switch. For one, there’s a random string involved
($S1), second there are multiple functions doing whole lot of conversions
(H=Hex, B=Bytes, G=Gzip) so B2H for example would be convert bytes to hex,
third there’s another function “ti_rox” involved which does bitwise XOR’ing
(common quick encryption technique) and finally this is in some way depends
on the malicious erohetfanu.com domain. The return, in this context,
signifies don’t even bother doing anything else and just return (no
encryption done).

5. OK now that I have a reasonable doubt to check out this line, I will use
malware’s own functions to step through and figure out the kill switch
value. Step-by-step:

A). Run the 2nd half to get a value back:

B). Do the other side of the puzzle. Convert “S1” from hex to bytes, then gzip to
bytes, then bytes to hex, store this in temporary $k variable.

C). XOR hex values from both sides, $k and $dname, store this value in $xored:
$xored = $(ti_rox $k $dname)

D). Now convert $xored bytes to hex, and hex to ASCII to get the kill switch value:

6. This is the domain name you would have to register to force the overall value of
that conditional statement to not be null, and therefore
return without encrypting. yippeekiyaa.aaay is the
answer.

Page � of �27 36

Objective 9.4: Recover Alabaster's Password
Question: Recover Alabaster's password as found in the the encrypted password vault.

Answer:

1. Alabaster made a mistake of analyzing the ransomware on his host machine
and now needs me to decrypt his password database. He provides a memory dump
file which will become necessary to have a chance at recovering the files.
This seems a bit questionable though. Alabaster is a highly qualified
InfoSec professional with SANS certifications (I’ve seen his file) and
should really know better than running malware on his machine - could he
have infected himself on purpose??

2. OK onto recovering files, first thing I did was get organized with the
code and try to get the most information possible about what malware is
doing from static code analysis. I find out what Stage 1 was actually
requesting since the unique value looked like it could be a hex value:

This tells me 2 things: wannacookie.min.ps1 is PowerShell filename for Stage
2 and the “.min” could potentially mean there’s a full pro version. Let’s
modify Stage 1 and output Stage 2 again.

I modified Stage 1 with the new hex value and Stage 2 full file is served,
which looks much more readable.

3. In a similar fashion, I get the private key from the server - it will
definitely become useful. However, it is not sent in bytes form so I had to
get rid of the base64 conversion as its used for server.crt. The fact that I
can just download the private key is a major misstep by the bad guy, the key
should really be locked away somewhere safe.

Page � of �28 36

4. I beautified majority of the ransomware code to help me understand what
it is doing:

There are now useful print statements for all interesting variables. Line
227 is commented out to allow malware to execute on my machine. Interesting
to note: hex and byte keys (same value) used to encrypt the actual files are
cleared out (263 & 264), which means they are no longer in memory. The
malware does all its C2 communication over DNS TXT queries and assigns a
unique cookie value to the infected host to identify and keep track of it.
WannaCookie also downloads an HTML display page and sets up a local web
server to let infected user know their files have been encrypted, how to
decrypt them and provides user interface to allow decryption to occur.

Page � of �29 36

5. The way this malware handles the most important part (encryption) is it
generates a random 32-byte key to encrypt files using symmetric algorithm
AES. The C2 server then sends its server.crt public certificate, which is
used by the malware to encrypt the symmetric key. Once this key is
encrypted, it is sent over DNS in pieces to C2. Then, most signs of the key
are erased to prevent recovery. On the C2’s side, the encrypted blob can be
decrypted using server’s private key, and the result of this would be the
decrypted symmetric key. I had the full infrastructure set up to infect a
host and print out values and to test the decryption.

6. After understanding how WannaCookie works, I realized that I should have
everything needed to recover the files. Obviously, the symmetric key is not
in memory since it is cleared by PowerShell. However, I do have C2’s public
key (server.crt) and was already able to get its private key (server.key). I
should be able to grab the encrypted blob of data (variable
“Pub_key_encrypted_key” above) from memory - this would be the 512 bytes
representing the encrypted symmetric key.

7. I search for 512 bytes in the provided memory dump, utilizing the
power_dump tool (https://github.com/chrisjd20/power_dump) which searches
through PowerShell variables. I start power_dump.py using Python. Load the
file with “ld powershell.exe_181109_104716.dmp”, then process it and create
search filters. My two
filters are: it must be
a hex value (matches
“^[a-fA-F0-9]+$”) and it
must have length of 512
bytes (len == 512). I
run the search and find
a potential encrypted
symmetric key. In the
source code, this
represents
Pub_key_encrypted_key
variable.

Page � of �30 36

https://github.com/chrisjd20/power_dump

8. Next, I need to get keys into strictly proper format, with header fields
included and base64 encoded. Public key was missing its headers so “-----
BEGIN CERTIFICATE-----" and “-----END CERTIFICATE-----" had to be manually
added. This format is required to convert the two keys into a PFX private
key containing both keys.

9. Using the following command I was able to perform the format conversion
(my password had to be set at prompt):

openssl pkcs12 -export -in server.crt -inkey priv.key -out server.pfx

10. Once I had the PFX file, I wrote a decryption function that would
decrypt the symmetric key I am looking for.

11. To run it, I assign hex value of
the encrypted blob to a variable,
convert hex to bytes as needed by my
“Priv_Key_Decr” function and decrypt
- I now have the decryption key!!

12. Once the symmetric key is derived, I perform decryption of files. The
decryption script uses malware’s own “e_n_d” helper function to loop through
files and the “e_d_file” function to do the AES decryption.

Page � of �31 36

13. Once the password database file is decrypted, I use Python to query for
some passwords:

14. The answer to this challenge is
password
ED#ED#EED#EF#G#F#G#ABA#BA#B.

Page � of �32 36

Objective 10: Who Is Behind It All?
Question: Who was the mastermind behind the whole KringleCon plan? And, in
your emailed answers please explain that plan.

Answer:

1. To solve the final challenge, I have to get by the Piano door.
Alabaster’s password looked very similar to those piano notes.

2. I wrote a quick and dirty Python script to validate the sequence before I
manually enter it in.

3. Alabaster’s password generates an offset error (website feedback) because
it is in the key of E, not D as required. Transposition is discussed in the
PDF document sent from Holly to Alabaster.

4. So since E is one full key away from D, I need to make all tones drop one
key.

5. After the piano door is cracked, Santa
is in the final room and turns out he was
behind the “evil” plan! He was just
testing me all along.

6. So Hans and the soldiers are actually
not the bad guys, soldiers were even
disguised elves, they work for Santa, who
architected this entire challenge to find
a skillful defender for the North Pole.
Well done, Santa “The Mastermind” Claus!
I would be honored to protect the North
Pole for you!  

Page � of �33 36

mailto:SANSHolidayHackChallenge@counterhack.com

Lessons Learned

The purpose of this section is to capture some lessons learned throughout doing the
challenges as they would apply to the real world of InfoSec. Lessons learned colored blue
would apply to blue team (defenders), those colored red are for red team (attackers), and
purple apply to both teams.

1. Input validation is critical for any input passed from an end user.

2. Directory listing is typically a bad thing and should always be disabled
unless there’s a valid reason to have it on for known directories.

3. Be aware of artifacts your utilities are leaving, for instance all
changes kept in .vimfile and .git.

4. Do not put credentials into a command line, always use input prompt.

5. Do not put sensitive data such as private keys and passwords into a
repository - they can be found even after files have changed.

6. There are usually multiple ways for entry, don’t get stuck on one.

7. When you are stuck, read more source code.

8. Misconfiguration of any network service could be deadly.

9. It is beneficial to perform Active Directory audits periodically.

10. Collect logs into a centralized location and write alerts for abnormal
behavior such as multiple failed logins from the same source.

11. Do not consider Python shell a secured unescapable environment. There
are many ways to bypass controls.

12. Generating errors is a good first step to testing.

13. Do not go into production until development is ready. Any rushed
implementation could end up being insecure.

14. Limit error/exception information returned to a bare minimum. For
example, web server’s “404 Not Found” response should not provide full
directory path.

15. DNS Security is as important for detecting and preventing threats as any
other common protocol.

16. Randomize malware network traffic - any static value can be easily
identified and prevented in all future communications.

17. Analyze malicious files only on a specially dedicated machine, segmented
off production network and in no way associated with production systems or
accounts.

Page � of �34 36

18. If creating malware kill switch, ensure others can’t take control of it.

19. Clear all important variables from memory that are not necessary for
operation. Memory can be dumped and those variables obtained.

20. Do not store password database unencrypted.

21. Protect access to your private keys.

22. If machine is infected with malware, grab a memory dump.

23. Do not open cookie recipes or any other macro-enabled documents sent
from an unknown source.

24. Do not open unknown CSV files, they may be injected with commands.

25. Use strong passwords, avoiding easily guessable ones such as
“Winter2018”.

26. Avoid using shared accounts.  

Page � of �35 36

Conclusion

In conclusion, I would like to again thank all who put this awesome challenge together and
for consistently doing an excellent job with Holiday Hack Challenges year after year! Huge
respect for creating quality content and sharing it with the community.

Thank you to all the conference speakers - your talks have given me a great amount of
guidance needed to complete the challenges and learn new things! Big thanks to North Pole
for providing the perfect venue for the conference with practically no LineCon!

Hats off to Santa for being the mastermind and never actually losing control of Kringle
Castle network. Also, thank you Santa for Christmas joy and good will this year!

Thank you for reading this write-up, I hope you found it interesting and… until next year!

Page � of �36 36

